B-162

Direct Quantitation of Five Immunosuppressant Drugs in Volume-Controlled Dried Whole Blood Spots by a Fully Automated DSM-LC-MS System

Richard J. Gibson, Jingshu Guo, Stephanie N. Samra, Yvonne Song, Thermo Fisher Scientific, River Oaks Pkwy, San Jose, CA

Abstract

Purpose: Demonstrate a complete and fully automated workflow for dried blood spot analysis of five commonly used therapeutic immunosuppressant drugs.

Methods: The analytical method was developed on the Thermo Scientific[™] Transcend[™] DSX-1 system consisted of a dried matrix spot module coupled with Thermo Scientific™ TurboFlow[™] technology and a triple quadrupole mass spectrometer (Figure 1).

Results: High-throughput 5 minute quantification of target analytes in dried blood spots was achieved to satisfy different cut-off needs in clinical settings.

Figure 1. A fully automated Transcend DSX-1 system was paired with a TSQ Altis Plus mass spectrometer

Dried Matrix Spot Module Transcend UHPLC TSQ Altis Plus

Introduction

Therapeutic drug monitoring of immunosuppressants drugs is vital for recipients of organ transplants to ensure concentrations are high enough to prevent transplant rejection, but low enough to avoid intoxication.

Liquid chromatography-mass spectrometry (LC-MS) is increasingly used in clinical research to quantify immunosuppressant drugs in whole blood as it can offer higher sensitivity and selectivity than other analytical techniques. LC-MS systems may be coupled with upstream dried matrix spot modules within one high-throughput, integrated and online workflow, allowing the extraction of matrices from pre-collected sample cards collected in a quick and minimally invasive manner

In this poster, such a workflow will be utilized to demonstrate the quantitation of five commonly monitored therapeutic immunosuppressants; cyclosporin A, everolimus, mycophenolic acid, sirolimus and tacrolimus.

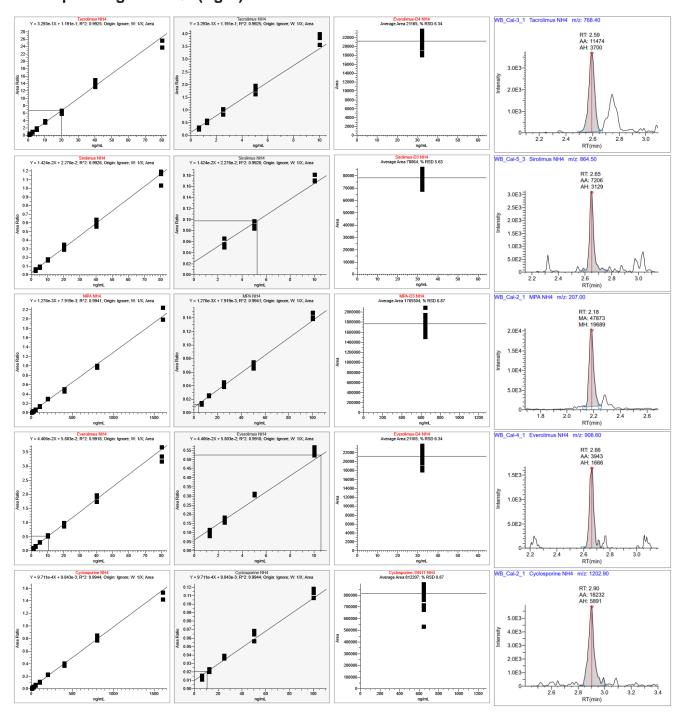
Materials and methods

Calibration and QC samples were prepared to varying concentrations in whole blood. 10 mL of each level of calibrant was then spotted in triplicate on DMS cards via a collection device. Immunosuppressants and standards were then extracted by an automated DSM-LC-MS system via flow-through desorption with a heated clamp (Figure 2).

The 2-dimensional TurboFlow technology allowed interference removal in the extracted samples prior to analytical separation. An integrated software, Aria MX, controlled each step of sample desorption and separation. Analyte quantitation was performed by a triple-stage quadrupole mass spectrometer (Figure 3/4), and the data was analyzed using general quantitation software.

Figure 2. Liquid chromatography conditions

	-	т	rboFlov		20	Analytical Column								
	E1	IU												
Time (min)	Flow Rate (mL/ min)	% A	% B	%C	Тее	Loop	Divert	Flow Rate (mL/ min)	Grad	%A	%В			
0.00	2.0	100	-	-	====	out	Waste	0.5	Step	70	30			
0.10	0.1	100	-	-	====	out	Waste	0.5	Step	70	30			
0.20	2.0	100	-	-	====	out	Waste	0.5	Step	70	30			
0.60	0.1	-	100	-	====	out	Waste	0.5	Step	70	30			
0.68	0.1	-	100	-	Т	in	Det	0.4	Step	70	30			
1.68	2.0	-	-	100	====	in	Det	0.5	Step	70	30			
1.93	2.0	-		100	====	in	Det	0.5	Ramp	30	70			
2.18	1.5	100	-	-	====	out	Det	0.5	Ramp	Ramp 25				
2.43	2.0	-	-	100	====	in	Det	0.5	Ramp	20	80			
2.68	1.0	100	-	-	====	out	Det	0.5	Ramp	15	85			
2.93	1.0	-	100	-	====	in	Det	0.5	Ramp	5	95			
3.43	1.0	100	-	-		out	Det	0.5	Step	5	95			
3.93	1.0	100	-	-	=====	out	Det	0.5	Step	70	30			
5.00	1.0	100	-	-	====	out	Det	0.5	Step	70	30			
Clamp Washes				Wash 3: Isop	2: 0.1% ropanol	ic acid in water acid in acetonitrile trile/acetone, 2/2/1 (v/v/v)								
Mobile Phases	B: 10 m	nM amm a	nonium f Icid in m	formate nethano nitrile/a	etone in , 0.05% I cetone,	A: 10 mM ammonium formate, 0.05% formic acid in water B: 10 mM ammonium formate, 0.05% formic acid in methanol								
Columns	Cyclone-P TurboFlow column, 50 x 0.5 mm at room temperature							Hypersil Gold C8, 50 x 2.1 mm, 3 $\mu m,$ 70 $\overset{\circ}{C}$ C						


Figure 3. Mass spectrometer source conditions

Polarity	(+)	Spray Voltage	4000
Sheath Gas (Arb)	50	Dwell Time (ms)	15
Aux Gas (Arb)	10	Q1 Resolution (FWHM)	0.7
Sweep Gas (Arb)	0	Q3 Resolution (FWHM)	0.7
lon Transfer Tube Temp. (°C)	400	Source Fragmentation	0
Vaporizer Temp. (°C)	300	CID Gas (mTorr)	1.5

Figure 4. Selected reaction monitoring transitions for each target analyte

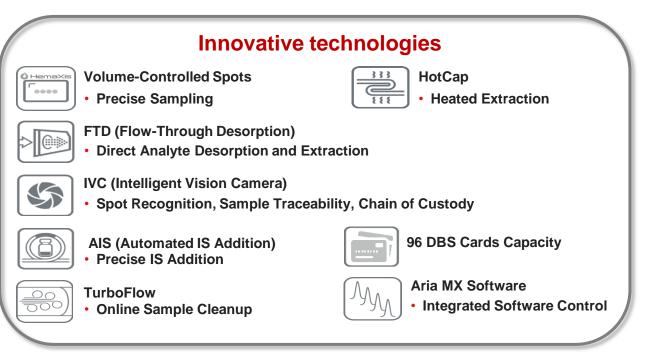

Figure 4. Selected reaction monitoring transitions for each target analyte									ta					Variability at LOC		
Analytes	Precursor		Quantifier		Qua	Qualifier		Analytes	(minu	LOD	ULOQ	LOQ	R ²			A
Analytes	m/z	RF Lens (V)	m/z	CE (V)	m/z	CE (V)			tes)					%RSD	% CV 2.16	V 80
Mycophenolic acid	338.2	80	207.1	23	275.1	20		Mycophenolic acid	2.19	6.25	1600	12.5	0.9941	3.11	2.16	
Tacrolimus	821.5	175	768.4	21	786.4	17		Tacrolimus	2.60	0.310	80	1.25	0.9925	8.67	6.80	
Sirolimus	931.5	173	864.5	17	882.4	12		Sirolimus	2.65	1.25	80	5.00	0.9926	9.84	7.36	
Everolimus	975.6	176	908.6	16	926.4	12		Everolimus	2.67	0.625	80	2.50	0.9918	10.28	6.81	
Cyclosporin A	1219.9	226	1202.9	17	1184.8	32		Cyclosporin A	2.91	6.25	1600	12.5	0.9944	12.58	6.85	

Figure 5. Full calibration curves and the lower limit region for each target analyte (left), internal standard responses (center) and extracted ion chromatograms corresponding to LOQs (right)

Within a major section, use second level he ads as necessary. Standard body text follows a second level head. Never use a single second level head within a major section. Second level heads are only used if you have two or more.

Figure 6. Retention times, limits of detection and quantitation, and calibration validation statistics corresponding to the LOQ

DMS alaysis has numerous advantages, such as quick and easy sampling, efficient sample transfer and storage and good analyte stability. Traditional downsides to DMS analysis, such as labor and resource intensive manual disc-punching and offline sample clean-up, have been avoided by the use of desorption and TurboFlow clean-up to provide a quick, robust, and fully automated and online platform. In addition, the workflow securely maintains chainof-custody for each dried spot throughout, with images provided from before and after each extraction.

Conclusions

Five common therapeutically monitored immunosuppressant drugs were quantified from dried blood using a rapid, online and fully automated workflow. The highlighted method utilized a fully automated Transcend DSX-1 system for quick and online analyte extraction, separation and detection.

Acknowledgements

We'd like to acknowledge everyone at Thermo Scientific and SPARK Holland who was involved in developing, supporting and marketing the DSX-1 system.

Trademarks/licensing

Disclaimer: For Research Use Only – Not for use in diagnostic procedures.

Specifications subject to change. Availability of product in each country depends on local regulatory marketing authorization status.

© 2023 Thermo Fisher Scientific Inc. All rights reserved. FTD, HotCap and IVC are trademarks of Spark Holland, P.V. HemaXis is a trademark of DBS System SA. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

Science at a scan Scan the QR code on the right with your mobile device to download this and many more scientific posters.

Thermo Fisher SCIENTIFIC

